An investigation of the effect of membrane curvature on transmembrane-domain dependent protein sorting in lipid bilayers
نویسندگان
چکیده
Sorting of membrane proteins within the secretory pathway of eukaryotic cells is a complex process involving discrete sorting signals as well as physico-chemical properties of the transmembrane domain (TMD). Previous work demonstrated that tail-anchored (TA) protein sorting at the interface between the Endoplasmic Reticulum (ER) and the Golgi complex is exquisitely dependent on the length and hydrophobicity of the transmembrane domain, and suggested that an imbalance between TMD length and bilayer thickness (hydrophobic mismatch) could drive long TMD-containing proteins into curved membrane domains, including ER exit sites, with consequent export of the mismatched protein out of the ER. Here, we tested a possible role of curvature in TMD-dependent sorting in a model system consisting of Giant Unilamellar Vesicles (GUVs) from which narrow membrane tubes were pulled by micromanipulation. Fluorescent TA proteins differing in TMD length were incorporated into GUVs of uniform lipid composition or made of total ER lipids, and TMD-dependent sorting and diffusion, as well as the bending rigidity of bilayers made of microsomal lipids, were investigated. Long and short TMD-containing constructs were inserted with similar orientation, diffused equally rapidly in GUVs and in tubes pulled from GUVs, and no difference in their final distribution between planar and curved regions was detected. These results indicate that curvature alone is not sufficient to drive TMD-dependent sorting at the ER-Golgi interface, and set the basis for the investigation of the additional factors that must be required.
منابع مشابه
Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملLipid and Protein Sorting By, and Generation Of, Membrane Curvature in Model Systems
The potential physiological relevance of liquid-liquid phase separation in lipid membranes to the formation and stability of “lipid rafts” in cellular plasma membranes has prompted extensive investigation of the physical chemistry underlying these phenomena. Furthermore, the concept of lipid rafts – 10-200 nm regions of cellular membrane enriched in specific lipids and proteins to enable comple...
متن کاملCharacterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane
Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...
متن کاملSynaptobrevin transmembrane domain influences exocytosis by perturbing vesicle membrane curvature.
Membrane fusion requires that nearly flat lipid bilayers deform into shapes with very high curvature. This makes membrane bending a critical force in determining fusion mechanisms. A lipid bilayer will bend spontaneously when material is distributed asymmetrically between its two monolayers, and its spontaneous curvature (C0) will influence the stability of curved fusion intermediates. Prior wo...
متن کاملاثرات میدان الکترومغناطیسی تلفن همراه بر عملکرد تک نانوکانال پروتیینی OmpF: یک رویکرد تجربی
Background: Widespread of telecommunication systems in recent years, have raised the concerns on the possible danger of cell phone radiations on human body. Thus, the study of the electromagnetic fields on proteins, particularly the membrane nano channel forming proteins is of great importance. These proteins are responsible for keeping certain physic-chemical condition within cells and managin...
متن کامل